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ABSTRACT A computer code has been developed for the
numerical calculation of sharp boundary equilibria of a toroidal
plasma with diffuse pressure profile. This generalizes earlier
work that was done separately on the sharp boundary and dif-
fuse models, and it allows for large amplitude distortions of the

lasma in three-dimensional space. By running the code, equi-
ibria that are stable to the so-called m = 1, k = 0 mode have
been found for Scyllac, which is a high beta toroidal confine-
ment device of very large aspect ratio.

In two earlier papers (1, 2) we described a method of steepest
descent for the computation of plasma equilibria satisfying the
partial differential equations of magnetostatics in three inde-
pendent variables. The method was based on the standard
variational principle of magnetohydrodynamics and yielded
primarily stable equilibria. In this paper we synthesize the
previous work in order to obtain a more comprehensive com-
puter code that can handle simultaneously a diffuse pressure
profile within the plasma and a sharp free boundary separating
the plasma from an outer vacuum region. Stability is analyzed
by examining global minimum properties of the potential en-
ergy. The new code also enables us to study certain unstable
equilibria and to discuss growth rates of the associated unstable
modes.

So far, no way has been found to improve the performance
of confinement systems of the Tokamak class through modifi-
cations of the geometry that are not axially symmetric. How-
ever, Scyllac equilibria have helical windings that are genuinely
three-dimensional and therefore provide an ideal application
for our computer code. We have found that the effect of pres-
sureless plasma coupled with large amplitude deformations of
the outer coil can be used to stabilize the m = 1, k = 0 mode,
which is a toroidal shift leading to most of the trouble with
Scyllac. The code shows that a large so-called / = 1 winding
combined with a small ! = 2 winding results in stability when
the cross sections of the torus forming the perfectly conducting
outer wall have a cloverleaf shape. The required specifications
lie within the range of experimental configurations now in
operation at the Los Alamos Scientific Laboratory. Modes with
higher wave number m > 2, whose failure to appear in practice
is partly due to the effect of finite Larmor radius, are stabilized
in runs of the code by the comparable effect of a finite mesh
size.

The variational method

Our basic plan s to calculate toroidal equilibria of a plasma by
minimizing the potential energy
p ] qv
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E= f f f [ PIEES
in three-dimensional space, subject to appropriate constraints.

In the plasma the magnetic field B is represented as the cross
product

B=Vx X V¢
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of two flux functions, x and y. The first of these is supposed to
be a function x = x(s) of a single-valued parameter s defining
a nested family of toroidal flux surfaces s = const. The pressure
p is related to the density p by an equation of state, p = p?, and
the mass between any pair of flux surfaces s = const. is con-
served. A sharp interface C can occur between the plasma and
an outer vacuum region bounded by a perfectly conducting
wall S. The vacuum field is represented as the gradient

B=Vg

of a scalar potential ¢ with fixed fluxes. The normal component
of B vanishes at all boundaries.

In equilibrium the energy E becomes stationary with respect
to admissible perturbations of the magnetic field B, the fluid
pressure p, and the free boundary surface C. In the plasma the

partial differential equations characterizing equilibrium are

VB=0, JXB=Vp

in which J = V X B is the current. In the vacuum these equa-
tions become

VB=0, VXB=0

so the function ¢ must be harmonic. The free boundary con-
dition making E stationary with respect to variations of the
sharp interface C asserts that the combined fluid and magnetic

pressure
P=p+ B2

is continuous across C. Both p and the tangential components
of B will in general have jumps there.

The relationship B-Vp = 0 shows that the magnetic lines are
real characteristics of the magnetostatic equations inside the
plasma. This causes a difficulty with the variational method that
we overcome by imposing the ergodic constraint that p be a
function of the flux parameter s alone. Justification of such a
step and explanations of other details of the method, such as the
construction of ¢, can be found in previous publications (1, 2).
Here we confine our attention to matters essential to an un-
derstanding of how the diffuse profile and sharp boundary
models have been combined.

Consider a system of modified cylindrical coordinates r, 6,
and z defined in terms of rectangular coordinates x, y, and z
by the formulas

x=(R+r)ycosd, y=(R + r)sinf

in which R is a positive number that will measure the major
radius of a torus. Put § = 2xo, and assume that the flux pa-
rameter s ranges over the interval 0 < s < 1, with the minimum
value, s = 0, corresponding to a magnetic axis which we rep-
resent by means of two equations

r=ry), z=2z@).
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Let u be a variable on the interval 0 < u < 1 and let
r =ry(uv),

be a parametric representation of the outer toroidal wall S,
where r) and 2z, are periodic functions of 4 and v with unit
periods. The flux surfaces s = const. inside the plasma are nested

tori whose parametric equations we now write in the form
r=r) + fwu,9)guwv)ruy) — r(v)]
z = 2W) + fwv,98w)zwp) — 2(v)]

in which f and g are radial functions that are periodic in 4 and
v and assume values in the range 0 < f < 1,0 < g < 1. In par-
ticular, we set f(u,0,1) = 1 so that g defines the free surface s
= 1 separating the plasma from the vacuum. Finally, we in-
troduce coordinates u, v, and s in the vacuum region by means
of the formulas

r=r+[s =1+ @2 - s)gllr — rol
2=z + s =1+ (2 — 9)glz, — 2]
with s ranging over the interval 1 <s < 2, where it is no longer
related to flux. .
The plasma and the vacuum are mapped onto a pair of ad-
jacent cubes in the space with coordinates u, v, and s. For 0 <

s < 1 the first flux function, x, depends on s alone, and we take
it to have the form

z = 2;(u,v)

X =s(1 + as)

with the coefficient a chosen so that the level surfaces s = const.
become evenly spaced near the magnetic axis. The second flux
function, ¥, is supposed to have the representation

Y=—u+ uishv + ¥

'in which ¥ = ¥(u,0,s) is an unknown function periodic in the

variables u and v and defined for 0 < s < 1. The factor u = u(s)
is an invariant, called the rotational transform, which is fixed
by the flux constraints of the problem. The scalar potential, ¢,
defined for 1 < s < 2, has two periods in the variables 4 and v
that are determined so the dual pair of fluxes of the magnetic
field B assume prescribed values.

After these transformations have been made, the potential
energy becomes a known functional

E = E(¢,¢/,f,g,ro,20)
of the three functions ¢, ¥, and f of three variables, of the single

function g of two variables, and of the two functions r¢ and z
of a single variable. The contribution to E from the vacuum
region has been discussed in some detail in ref. 1, and the con-
tribution to E from the plasma has been described carefully in
ref. 2. :

Euler equations for ¢, ¥, f, g, 7o, and z¢ can be found by
applying the standard procedure of the calculus of variations
to the functional E. Let us write these equations symbolically
in the form

Li[¢] = Lz[\l’] = Lf]=0,
K(2,8,58) = M\[ro] = My[2] = 0.

We see that L, is simply the Laplace operator with respect to
the curvilinear coordinates u, v, and s. The pair of second-order
partial differential equations for ¢ and f defined by the oper-
ators L and L3 are of nonstandard type. The function K de-
pends on the components of the magnetic field at the sharp
boundary C, since it is equal to the jump there in the fluid plus
magnetic pressure P. However, it is perhaps better to interpret
the statement K = 0 as a partial differential equation for g of
the first order and the second degree. The relationships M, and
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M for the magnetic axis involve averaging processes and are
therefore more tractable. It can be shown by example that the
full system of magnetostatic equations we have written has
weak solutions even in cases in which regularity does not pre-
vail.

Accelerated paths of steepest descent

We propose to calculate magnetohydrodynamic equilibria by
considering paths of steepest descent associated with the po-
tential energy E (1, 2). To define the paths of steepest descent
we introduce an artificial time parameter ¢ and write partial
differential equations for the six unknowns ¢, ¥, f, g, ro, and
2z as functions of the four independent variables u, v, s, and ¢.
The equations are found by adding partial derivatives with
respect to the artificial time ¢ to the Euler equations so as to
obtain a system of the hyperbolic type. In the case of the
equation for the free surface C, this requires adding a partial
derivative dg/dt of the first order. For the magnetostatic
equations, which are of nonstandard type, we must add first-
and second-order derivatives of ¢ and f that are suggested by
the conjugate gradient method. For the potential function ¢
we add mixed partial derivatives with respect to space and time
that are characteristic of the method of successive overrelaxa-
tion. The entire system can be expressed in the concise form

alU, + bU,, + cU,, + dU, + eU,=L[U]

in which U is the six-dimensional vector of unknowns, L is the
differential operator specified by the Euler equations, and a,
b, ¢, d, and e are matrices of parameters controlling the con-
vergence of the solution. To compute physically stable equi-
libria, the parameters are to be chosen so that E approaches a
minimum value and U approaches a steady state as t becomes
infinite.

Because it is the fluxes and not the currents of the vacuum
magnetic field B that are held fixed, the energy E becomes a
maximum as a functional of ¢ rather than a minimum at
equilibrium. To use the minimum property of E as a test for
stability it therefore becomes necessary in principle to solve the
Laplace equation for ¢ exactly for each value of the artificial
time. In practice it suffices instead to use appropriate acceler-
ation factors in the choice of the coefficient matricesa, b, c, d,
and e. Another alternative, which we have not yet explored in
detail, would be to solve the Laplace equation by applying fast
Fourier transform with respect to the periodic variables u and
v in order to invert the dominant terms.

The role of the coefficients a, b, ¢, and d in the system of
partial differential equations for U is to bring them into the
hyperbolic type and provide them with appropriate charac-
teristics. The second-order terms result in an accelerated
method of steepest descent for E whose rate of convergence is
governed by the first-order coefficient e. Let us suppose that,
for large artificial time ¢, the energy E has an expansion

E =3A, exp (2\,t)

in exponential functions. Values of |E;/E,| averaged over a
number of time cycles are a good measure of the dominant rate
2X of growth or decay of E. Expansion of U in a similar series
of exponentials and substitution of the series into a system of
linearized differential equations gives a quadratic equation for
the rate of growth or decay X of U in terms of e that has the
form
al? + e\ = o?

in a scalar case with b = ¢ = d = 0. Manipulation of this rela-
tionship shows that, for fixed a, b, ¢, and d, the optimal choice
for e providing maximal acceleration of the convergence in ¢
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is a quantity proportional to the dominant growth rate \. When
such a law of proportionality between e and |Ey/E;| is im-
posed, which means of course that e varies with ¢, not only is
the best rate of convergence achieved but also an estimate is
obtained of the growth rate w of the least favorable mode for
an equilibrium that is unstable. To ascribe a physical meaning
to this growth rate in practice, comparison must be made with
some example in which an Alven transit time is known from
other considerations.

The procedure we have described for acceleration by means
of a variable convergence factor e enhances significantly the
method of steepest descent, which is prohibitively slow in its
standard formulation. The procedure is also applicable to the
problem of estimating the relaxation factor for the method of
successive overrelaxation in a more general context, provided
that a functional like E is available to assess the growth rate of
the dominant mode in the error, which tends to switch around
at different stages of the iteration. In this way, rates of con-
vergence can be improved by as much as a factor of 10 in
practice.

An exception to what has been said has to be made for the
partial differential equation of the free surface because it is only
of the first order. However, no acceleration is called for in that
case, so the coefficients of the time derivatives can be assigned
in a more obvious way. It then turns out that the previous as-
sertions about growth rates remain valid even with a free sur-
face included in the model. For the free surface model, the
convergence of the solution is markedly improved in a coor-
dinate system, such as ours, tied to the motion of the magnetic

axis.

Discretization

In order to implement our scheme for the computation of
magnetohydrodynamic equilibria numerically, we apply the
finite element method to the variational principle for the po-
tential energy E. This is accomplished by first writing down a
second order accurate discrete approximation of E, which can
be done several different ways using a rectangular mesh. To
arrive at finite difference equations for equilibrium, we set
equal to zero the derivatives of the approximation of E with
respect to the nodal values of the unknowns. A discrete version
of the problem is thus obtained which is in conservation form
and therefore can be solved even when only weak solutions of
the continuous version are presumed to exist. It is especially
important to use a conservation form of the magnetostatic
equations inside the plasma (2). Conservation form is also re-
quired of the Laplace equation for the potential ¢ of the vac-
uum magnetic field because of the familiar compatibility
condition on the solution of the Neumann problem. However,
more latitude is permissible in the numerical treatment of the
free boundary condition.

An iterative scheme to solve the finite difference equations
for equilibrium is obtained by adding in difference approxi-
mations of the artificial time derivatives used to define paths
of steepest descent. For a given choice of the mesh sizes in u,
v, 5, and ¢, the coefficients a, b, ¢, and d must be selected to meet
the Courant-Friedrichs-Lewy criterion for numerical stability
and convergence. Then, an estimate of E,;/E, can be used to
determine the coefficient e so as to give optimal convergence
of the iterations. In physically unstable cases the method div-
erges, but it yields an estimate of the growth rate of the most
unfavorable mode.

Again an exception must be made of the first-order equation
for the free surface, which we take to have the form

& = K(g,g.,,8.).

Since no second-order derivatives with respect to artificial time
appear, it is now the relevant element of e that has to be selected
to meet the Courant-Friedrichs-Lewy criterion. We have
normalized it to be unity. Moreover, differencing must be
performed in a fashion appropriate for equations of the first
order. We have used a version of the Lax-Wendroff scheme
involving averages of the nodal values of K that lead to stability
attributable to weights dependent on 0K/ dg,, and dK/dg,. This
introduces relatively little artificial viscosity, but a certain
amount seems unavoidable for any successful computation of
free surfaces in space of dimension higher than two (1). It is
significant that, for both the first-order and the second-order
partial differential equations of the full artificially time-de-
pendent system for U, the Courant-Friedrichs-Lewy stability
criterion simply imposes uniform bounds on the ratios of the
mesh size in artificial time to that in the space variables.

Mathematical instabilities of the numerical method we have
described are easily distinguished from physical instabilities
of the equilibrium being computed because the former tend
to make E oscillate or increase whereas the latter always make
E decrease indefinitely. A finer analysis of the solution can be
performed by plotting Fourier coefficients of important geo-
metric and physical quantities as functions of the artificial time
on a logarithmic scale. However, to obtain good resolution, the
mesh sizes and convergence factors occurring in the method
must be adjusted sensibly.

The effect of finite mesh size is to introduce truncation errors
that we can liken to artificial elasticity. This is comparable to
the effect of finite Larmor radius in plasma physics and tends
to make equilibria seem more stable in the calculations than
they actually are for the continuous magnetohydrodynamic
model. Theoretically the truncation error can always be assessed
by refining the mesh, but limitations on computer capacity for
large-scale, time-dependent calculations in three dimensions
restrict what can be achieved in practice.

We have written a Fortran code for the CDC 6600 computer
that implements the ideas described above for the numerical
calculation of sharp-boundary diffuse-profile equilibria of a
toroidal plasma. The code has been validated through extensive
comparisons with exact solutions of the magnetostatic equations
and with normal mode analyses of linear stability. A typical run
of 1000 artificial time cycles on a mesh of 6000 grid points takes
about an hour of machine time. The code has been distributed
to the Los Alamos Scientific Laboratory and can be obtained
from the Argonne Code Center of the Argonne National Lab-

oratory.

Stable high 8 equilibria

The computational method we have described is useful for the
determination of high 8 equilibria, where 8 refers to a standard
value of the dimensionless parameter 8 = 2p /B2. For low aspect
ratio toroidal devices of the Tokamak class we have found stable
sharp boundary equilibria with 8 as high as 0.25. This is
achieved with axially symmetric geometry by denting in the
container wall along its outer perimeter. However, the plasma
fills half the volume of the container and therefore comes
perhaps unrealistically close to the outer wall in equilibrium.
Also, there are difficulties in heating such a plasma.

More fruitful applications of the method have been made to
large aspect ratio, high 8 stellarators like the Scyllac developed
at Los Alamos (3). The equilibrium’ and stability code can be
used to model one period of Scyllac consisting of a slightly bent
and twisted section of a cylinder. In the vacuum we put equal
to zero the flux dual to the current

1=fd¢
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FI1G. 1. Sample cross sections of coil stabilizing pressureless
plasma model of Scyllac.

obtained by integrating over a cycle that is as short as possible.
Correspondingly, in the plasma we make the rotational trans-
form u vanish identically. Letting R become the aspect ratio,
we write the equations of the outer wall S in the form
riuy) = (1 — A, cos 2av)[cos 2mu — A; cos 2x(u — v)]

+ A, cos 2mv + Aj(cos 2wu) cos 6m(u — v).

T2}
~

2(ut) =@ — A, oo 2zv)(sin 2ru + A, sin 2r(u — v)]
+ A, sin 2mv + Ag4sin 27u) cos 6r(u — v)

in which the wavelength of the Ag term is somewhat uncon-
ventional. Here 2xv /0 represents the number of periods of the
device and is no longer unity. The shape factors A; and Ag de-
scribe an [, 1 coil that has helical symmetry, whereas the
coefficients Ag and A; introduce additional I =0 and ! = 2
fields.

The computer code shows that stable equilibria for Scyllac
exist when the outer region is filled mostly with pressureless
plasma and there is only a relatively thin vacuum shell. For
example, a stable configuration near one being tested at Los
Alamos has been found with 24 periods, R =37, 8=0.6, Ag =
0, A; = 0.23, Ag = 0.3, and Ag = 0.1. The geometry of this case
is illustrated in Fig. 1, where the next to the last flux surface
represents the free boundary. Characteristic of the stable
equilibria is the fact that the cross sections of the helical I = 1
coil are not perfectly circular. The results suggest that perhaps
the least stable straight helical equilibria for the pressureless
plasma model are those with circular cross sections.

The most remarkable feature of our equilibria is their sta-
bility to the m = 1, k = 0 mode, which is an infinitesimal
translation in the r,z plane. This mode is sensitive to the number
of mesh points in the direction of v; too few can make it appear
more stable than it really is. Similarly, the effect of a relatively
large mesh size in u is to stabilize the m = 2 mode, which is also
subject to damping by the diffuse pressure profile. This effect
has been verified by investigating a case in which u = 1/2.
Typical runs on which our stability analysis is based have 32
mesh intervals in the poloidal and toroidal coordinates u and
v but 16 in the radial flux coordinate s.

Unstable Scyllac equilibria can also be studied by means of
the code. This is done by initializing the average coordinates
of the magnetic axis at different positions along the r axis. The
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FiG. 2. Streak plot of plasma displacement for computer model of Garching experiment.
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plasma moves inward with advancing artificial time when the
magnetic axis is located initially far enough in toward the major
toroidal axis, whereas it moves outward when the initial position
lies further out. At some intermediate position the magnetic axis
hovers longer before moving in either direction. This behavior
is interpreted to indicate the presence of an unstable equilib-
rium near the intermediate position, a conclusion that is borne
out by closer examination of the forces that occur. We have
found the toroidal restoring force required for equilibrium to
be somewhat bigger than that predicted by linearized sharp
boundary theory when the helical excursion A, is large (4-6).
Because these results are sensitive to truncation error, longer
runs on a mesh of 16,000 points have been necessary to establish
them convincingly. There is also sensitivity to the initial shape
of the magnetic axis; too little helical excursion makes it move
in, whereas too much makes it move out.

We have compared our computer simulation of unstable
equilibria with experimental data from the Max Planck Institute
for Plasma Physics in Garching (7). Quite good agreement was
obtained between the magnitude of the I = 2 field required for
equilibrium in the experiment and the corresponding value of
the shape factor A, needed for equilibrium according to the
theory. Results of our computational analysis of the Garching
high 8 stellarator are shown in Fig. 2.

We have estimated growth rates of the m = 1, k = 0 mode
for unstable equilibria. These can be compared with the times
of duration of the corresponding experiments, which run be-
tween 5 and 20 usec. The hope would be that, if a stable equi-
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librium surrounded by pressureless plasma were tested with a
correct analysis of the necessary restoring force, then the ex-
periment might last more than 100 usec.
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